

Table of contents

1. J	lob Definition	2
2. F	Parameters and machine data	4
2.1	Example: Uniform rounding of the cutting edge	5
Rou	Inding of the cutting edges: Drill ø10	5
2.2	Examples for rounding of the cutting edges before - after	6
<i>3.</i> S	Some charts	7
3.1	Rounding of the main cutting edge and -corner	7
3.2	Speed	8
3.3	Amount of mountings	10
3.4	Immersion depth	10
3.5		11
3.6	Jaggedness	11
3.7	Example Processing	12
3.8		12

1. Job Definition

 $10\ \mu m\text{--}\ 90\mu m$ rounding of the cutting edge, depending on the application.

When rounding the cutting edge, the following needs to be considered:

- Rounding of the cutting edge larger than 60 μm, the cutting edge should be chamfered with a similar size than the desired radius. Best would be 10-20% smaller.
- ➤ The cutting corner should not be rounded more than 30% of the main cutting edge.
- To avoid a built-up edge, especially when processing titanium and aluminium, a polished tool is benefiting.
- ➤ Using HSC 1/300, a cutting edge of 16 µm can be achieved. The cutting corner will not be rounded more than that.
- Using HSC 4/400 or M4/300, a cutting edge of 10 μm can be achieved.
- ➤ In order that the bore hole stays straight, both main cutting edges shall be not more unequally rounded than +- 5%.
- In case you process the cutting tool in 100% clockwise direction, you can achieve a K-factor >1.
- ➤ The influence of the parameters on rounding of the cutting edge and jaggedness in the OTEC machine is as follows:

Rounding of the cutting edge:

-process time: ca. 40% -speed of rotor: ca. 30% -speed of holders: ca. 20%

-direction of rotation: 10% (clockwise leads to more rounding)

Jaggedness:

process time: ca. 15%speed of rotor: ca. 5%speed of holders: ca. 15%

- direction of rotation: 23% (counter clockwise leads to smoother surfaces)

Recommended rounding at the cutting edge(e.g.: drill, diameter 10 mm):

Processing of wood: 4 to 6 μm

Processing of aluminium 6 to 10 μm

Processing of steel 4 μm x diameter of the tool

Typical process parameters:

Machine: DF-3 Tools

Media: HSC 1/300 cutting edge radius up to 16 μm

H4/400 cutting edge radius up to 12 μm TZM cutting edge radius up to 30 μm TZMS cutting edge radius up to 90 μm

Process time: 4 to 45 min.

2. Parameters and machine data

Tool	Ø	Rounding of the cutting edge before processing (µm)	Rounding of the cutting edge after processing (µm)	Media	Speed Rotor [min-1]	Speed of holders [min-1]	Direction of the rotor	time (min.)	Angular holder	Immersion depth
Drill	4	5,1	9,5	HSC 1/300	45	96	50%-50%	8	-	max
Drill	5	2,8	11,7	HSC 1/300	45	96	50%-50%	10	-	max
Drill	5	7,8	31,5	TZM 2/3	45	20	50%-50%	20	-	max
Drill	7	5,7	55	TZMS 4/5	45	20	50%-50%	7	-	max
Drill	10	2,8	11,7	HSC 1/300	45	96	50%-50%	10	-	max
Drill	10	3,5	15	HSC 1/300	45	96	50%-50%	13	-	max
Drill	10	4,5	25	TZMS 4/5	45	20	50%-50%	2	-	max
Drill	10	3,7	40	TZMS 4/5	45	20	50%-50%	4	-	
Drill	12	6,7	21,8	TZMS 2/3	45	20	50%-50%	5	-	
Drill	12	6,7	26,8	TZMS 2/3	45	20	50%-50%	6	-	
Drill	12	6,7	36,8	TZMS 4/5	45	20	50%-50%	10	-	
Drill (droplets removal)				HSC 1/300	45	96	30 sec to the right,120 sec to the left	2,5		max

2.1 Example: Uniform rounding of the cutting edge

Measuring points

Cutting corner (SE)

main cutting edge (HS)

Rounding of the cutting edges: Drill ø10

			ain cu	tting edge 1	main cutting edge 2		
Condition		HS SE		Jaggedness	HS	SE	Jaggedness
Before processing	-	4	11	0,6	4	11	0,6
After processing	1	23	28	0,2	21	27	0,5
After processing	2	21	32	0,6	19	31	0,7
After processing	3	20	34	0,4	19	34	0,7
After processing	4	18	28	0,5	19	30	0,4
After processing	5	22	30	0,3	21	28	0,4
After processing		21	20	0,5	21	23	0,5

Process parameters: DF-Tools with additional drive

2.2 Examples for rounding of the cutting edges before - after

Processed in driven holder. Rotation: 50% clockwise, 50% counter clockwise.

Before processing

After processing

For processing aluminium, a tool polished with H4/400 was found very benefiting.

3. Some charts

3.1 Rounding of the main cutting edge and -corner

3.2 Speed

HS....main cutting edge

3.3 Amount of mountings

3.4 Immersion depth

3.5 Rounding of the cutting edge with different granules

3.6 Jaggedness

3.7 Example Processing

Figure 1: Drill, 8mm, cutting edge 21µm, before processing

3.8 Polishing straight fluted drills

Process time for polishing is around 15 to 30min.

Media: H4/400

Machine DF-3 Tools with angled holders

				Sense of	direction	Immersion depth	Direction	
Tool	Time [min]	Speed Rotor [rpm]	Speed holders [rpm]	Normal	Counter	[mm]	Left	Right
10 mm	15	45	10	Х		max	100%	