

FRICTION OPTIMIZATION THROUGH MASS FINISHING: IMPROVING RUN-IN AND FRICTION BEHAVIOR AND STRENGTH

AGENDA

1	OTEC Streamfinish technology
2	Mechanical frictional conditioning
3	Friction results and analysis
4	Treatment of gears

STREAM FINISHING MACHINE

Principle

Angular adjustment for work piece holder (immersion angle)

Rotating workpiece holder

STREAMFINISH PROCESS

Descrete **E**lement **M**ethod Simulation

SURFACE EFFECT OF STREAMFINISH

Streamfinish is a friction load...

- Intentional abrasion \rightarrow Roughness reduction
- Small surface deformation and plasticization
- Shear stresses → Grain structure modification
- Friction energy → Frictional conditioning

 $\mathbf{P}_{\mathbf{F}} = \mathbf{F}_{\mathbf{N}} \cdot \mathbf{V}_{\mathbf{T}} \cdot \mathbf{\mu}$

FRICTIONAL CONDITIONING

Third-Body – The better friction surface

High frictional energy input of the process leads to:

Easy-to-shear layer:

- Impurities in the boundary layer(\rightarrow AES graph)
- Only a few nm thick
- Layer is easy to deform
- \rightarrow Reduced coefficient of friction

Easy-to-shear layer:

- Impurities in the boundary layer(→FIB picture)
- Only a few nm thick
- Layer is easy to deform
- \rightarrow Reduced coefficient of friction

Third-body "grows" in the surface by continuingly provided friction energy – it's not lost by wear

FRICTIONAL CONDITIONING: FINSHING BENEFITS

Reduced friction and wear

- Reduced roughness peaks
- Improved lubrication film strength
- Clearly less proportion of boundary friction
- Reduced peak provides use of low viscosity oil for similar contact conditions

 $\frac{\eta v}{p}$

- Finish acts as run-in-like treatment
- Third Body reduces friction and wear
- Stable wear corridor
- No separate running-in necessary

FRICTION TEST BENCH RESULTS

Amsler twin-disk test - results

MICRO-HARDNESS INCREASEMENT

Amsler twin-disk – FIB and T-SEM

- Streamfinish shows 10-15%
 higher Hardness of the boundary layer
- No clear load influence
- Nanocrystalline structure in the first 100 nm
- Clear grain size gradient visible

Nanoindentation:

FIB + T-SEM, SF:

200 nn

TREATMENT OF GEARS

Effective integral processing solution

- Extremely low process variation (1 μ m) compared to other processes (~5-10 μ m)
- No handling of hazardous chemicals
- Minimized risk of lubricant film breakage due to introduction of microscopic lubrication pockets
- Significant improved surface isotropy
- Reduced roughness peaks, mirror like surface using dry polishing
- Less wear, accelerated running-in, longer oil life
- Low risk of micro-pitting
- Reaching into smallest geometries, thanks to very fine media
- Fast process time (ca. 60s per part and machine)
- Cost-effective process: thanks to closed-loop operation and no cost-intensive disposal
- Fast & efficient: deburring, edge rounding & smoothing in one step

TREATMENT OF GEARS

Improved strength

CONCLUSION

- Fast and controlled run-in after finishing
- Roughness level determining for the triboperformance
- This lever can be adjusted according specific tribological requirements
- Sample treatments in our Finishing Center for process development

THANK YOU FOR YOUR ATTENTION!

